

# Department of Chemistry **Study and Evaluation Scheme**

Program: Master of Science (Chemistry)

Year: Second / Semester: Third

|        |                |                                                          |               | Perio | od/ hr./ | week/ | Е   | valuati | on Sche | me  |                  |                  |               |                  | At                   | ttribut         | es                           |             |                     | able                                                      |                                           |
|--------|----------------|----------------------------------------------------------|---------------|-------|----------|-------|-----|---------|---------|-----|------------------|------------------|---------------|------------------|----------------------|-----------------|------------------------------|-------------|---------------------|-----------------------------------------------------------|-------------------------------------------|
| S. No. | Course<br>code | Course Title                                             | Type of Paper | L     | Т        | P     | CA  | TA      | Total   | ESE | Subject<br>Total | Total<br>Credits | Employability | Entrepreneurship | Skill<br>Development | Gender Equality | Environment & Sustainability | Human Value | Professional Ethics | United Nations Sustainable<br>Development<br>Goals (SDGs) |                                           |
| THEC   | RIES           |                                                          | I             |       |          |       | ı   |         |         | ı   | ı                | ı                | ı             | 1                |                      |                 |                              |             | ı                   |                                                           |                                           |
| 1.     | CH501          | Polymer Chemistry                                        | Core          | 03    | 01       | 00    | 40  | 20      | 60      | 40  | 100              | 4                | ✓             | ✓                | ✓                    |                 | ✓                            |             | ✓                   | Industry<br>Innovation and<br>Infrastructure              | 9 INDUSTRY, INNOVATION AND INFRASTRUCTURE |
| 2.     | CH513          | Organic reaction, Reagents and<br>Heterocyclic Chemistry | Core          | 03    | 01       | 00    | 40  | 20      | 60      | 40  | 100              | 4                | <b>√</b>      |                  | ✓                    |                 | ✓                            |             |                     |                                                           |                                           |
| 3.     | CH514          | Chemical Kinetics and Chemical<br>Equilibrium            | Core          | 03    | 01       | 00    | 40  | 20      | 60      | 40  | 100              | 4                | <b>√</b>      |                  | <b>√</b>             |                 | <b>\</b>                     |             |                     | Zero Hunger                                               | 2 ZERO HUNGER                             |
| 4.     | CH515          | Inorganic Reaction Mechanism and Catalysis               | Core          | 03    | 01       | 00    | 40  | 20      | 60      | 40  | 100              | 4                | <b>✓</b>      | <b>✓</b>         | <b>✓</b>             |                 | <b>✓</b>                     |             |                     | -                                                         | -                                         |
| 5.     | CH516          | Quantum Chemistry; A Molecular<br>Approach               | Elective      | 03    | 01       | 00    | 40  | 20      | 60      | 40  | 100              | 4                | <b>✓</b>      |                  | <b>✓</b>             |                 | <b>✓</b>                     |             |                     | Clean and<br>Affordable<br>Energy                         | 7 AFFORDABLE AND CLEAN ENERGY             |
| 6.     | CH506          | Bioinorganic & Supra molecular<br>Chemistry              | Elective      | 03    | 01       |       | 40  | 20      | 00      | 40  | 100              | 4                | <b>✓</b>      | <b>✓</b>         | <b>✓</b>             |                 |                              |             |                     | Good Health<br>and Well-being                             | 3 GOOD HEALTH AND WELL-BEING              |
| PRAC   | TICALS         |                                                          |               |       |          |       |     |         |         |     |                  |                  |               |                  |                      |                 |                              |             |                     |                                                           |                                           |
| 6.     | CH517          | Chemistry LabPracticals-3                                | Core          | 00    | 00       | 08    | 40  | 20      | 60      | 40  | 100              | 4                | <b>✓</b>      | ✓                | <b>✓</b>             |                 | <b>√</b>                     |             |                     | Good Health<br>and Well-being                             | 3 GOODHEALTH AND WELL-BEING               |
|        |                |                                                          | 15            | 05    | 08       | 240   | 120 | 360     | 240     | 600 | 24               |                  | •             |                  |                      |                 |                              | •           |                     |                                                           |                                           |



| Effective from Sessi     | Effective from Session: 2019-2020 |                                                                                                                             |                                                                 |         |      |        |       |  |  |  |  |  |
|--------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------|------|--------|-------|--|--|--|--|--|
| Course Code              | CH501                             | Title of the Course                                                                                                         | Polymer Chemistry                                               | L       | T    | P      | C     |  |  |  |  |  |
| Year                     | Second                            | Semester                                                                                                                    | Third                                                           | 3       | 1    | 0      | 4     |  |  |  |  |  |
| Pre-Requisite            |                                   | Sc. with Chemistry Co-requisite                                                                                             |                                                                 |         |      |        |       |  |  |  |  |  |
|                          | The main objective of             | this course is to study the                                                                                                 | he mechanism of polymer preparation, their processing technical | niques, | comm | ercial | uses, |  |  |  |  |  |
| <b>Course Objectives</b> | identification technique          | entification techniques and preparation process of vinyl polymers, polyamides, polyesters, synthetic rubbers, cellulose and |                                                                 |         |      |        |       |  |  |  |  |  |
|                          | copolymer resins                  |                                                                                                                             |                                                                 |         |      |        |       |  |  |  |  |  |

|     | Course Outcomes                                                                                                           |
|-----|---------------------------------------------------------------------------------------------------------------------------|
| CO1 | Evaluate the different mechanisms of polymer preparation and their classification.                                        |
| CO2 | Understand the colligative properties of Polymers and evaluate the identification techniques such as IR, NMR of Polymers. |
| CO3 | Analyze various processing techniques of Polymer.                                                                         |
| CO4 | Understand the preparation process of vinyl polymers, polyamide, polyesters and rubber.                                   |
| CO5 | Understand the Vulcanization of Rubber and synthesis of Synthetic Rubber and various other copolymer resins.              |

| Unit<br>No. | Title of the Unit                    | Content of Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Contact<br>Hrs. | Mapped<br>CO |
|-------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 1           | Polymer &<br>Polymerization          | Monomers, functionality, degree of polymerizations, classification of polymers, glass transition, melting transition, criteria for rubberiness, polymerization methods: addition and condensation; their kinetics, metallocene polymers and other newer techniques of polymerization, copolymerization, monomer reactivity ratios and its significance, kinetics, different copolymers, random, alternating, azeotropic.                                                                                                         | 8               | 1            |
| 2           | End group analysis                   | Solubility and swelling, Concept of molecular weight distribution and its significance, concept of average molecular weight, determination of number average, weight average, viscosity average and Z-average molecular weights, polymer crystallinity, analysis of polymers using IR, XRD, microscopic (optical and electronic) techniques.                                                                                                                                                                                     | 8               | 2            |
| 3           | Polymer processing<br>Techniques     | Commodity and general-purpose thermoplastics: PE, PP, PS, PVC, Polyesters, Acrylic, PU polymers. Engineering Plastics: Nylon, PC, PBT, PSU, PPO, ABS, Fluoropolymers Thermosetting polymers: Polyurethane, PF, MF, UF, Epoxy, Unsaturated polyester, Alkyds. Natural and synthetic rubbers: Recovery of NR hydrocarbon from latex; SBR, Nitrile, CR, CSM, EPDM, IIR, BR, Silicone, TPE, Specialty plastics: PEK, PEEK, PPS, PSU, PES etc. Biopolymers such as PLA, PHA/PHB.                                                      | 8               | 3            |
| 4           | Some Commercially important Polymers | Difference between blends and composites, their significance, choice of polymers for blending, blend miscibility-miscible and immiscible blends, thermodynamics, phase morphology, polymer alloys, polymer eutectics, plastic-plastic, rubber-plastic and rubber-rubber blends, FRP, particulate, long and short fibre reinforced composites. Polymer reinforcement, reinforcing fibers — natural and synthetic, base polymer for reinforcement (unsaturated polyester), ingredients / recipes for reinforced polymer composite. | 8               | 4            |
| 5           | Vulcanization of rubber              | Polymer compounding-need and significance, different compounding ingredients for rubber and plastics (Antioxidants, Light stabilizers, UV stabilizers, Lubricants, Processing aids, Impact modifiers, Flame retardant, antistatic agents. PVC stabilizers and Plasticizers) and their function, use of carbon black, polymer mixing equipment, cross-linking and vulcanization, vulcanization kinetics                                                                                                                           | 8               | 5            |

#### **Reference Books:**

Principles of polymer chemistry: A Ravve, 2nd Edition, Kluwer Academic publications

Polymer Science and technology: Joll. R. Fried, Prentice – Hall.

Principles of polymer systems: F. Rodriguez, Claude Cohen, C.K. Ober, L.A. Archer, Vth Edition, Taylor & Francis

#### e-Learning Source:

https://nptel.ac.in/content/storage2/courses/103103029/pdf/mod7.pdf

https://www.e-education.psu.edu/matse202/node/712

 $http://eacharya.inflibnet.ac.in/data-server/eacharya\ documents/55daa452e41301c73a2cb5ac\_INFIEP\_208/806/ET/lec\%20-3.pdf$ 

https://nptel.ac.in/content/storage2/courses/103103029/pdf/mod7.pdf

 $https://nptel.ac.in/content/storage2/nptel\_data3/html/mhrd/ict/text/113105028/lec20.pdf$ 

|              |     |     |     | Course | Articulation | on Matrix: | (Mapping | of COs wi | th POs and | l PSOs) |      |      |      |
|--------------|-----|-----|-----|--------|--------------|------------|----------|-----------|------------|---------|------|------|------|
| PO-PSO<br>CO | PO1 | PO2 | PO3 | PO4    | PO5          | PO6        | PO7      | PO8       | PSO1       | PSO2    | PSO3 | PSO4 | PSO5 |
| CO1          | 3   | -   | 2   | -      | -            | 2          | 2        | 3         | 3          | 2       | 2    | 2    | 2    |
| CO2          | 1   | -   | 2   | -      | -            | 2          | 2        | 3         | 2          | 2       | 2    | 1    | 3    |
| CO3          | 3   | -   | 2   | -      | -            | 2          | 2        | 3         | 3          | 2       | 2    | 2    | 2    |
| CO4          | 3   | -   | 2   | -      | -            | 2          | 2        | 3         | 3          | 2       | 2    | 2    | 1    |
| CO5          | 3   | -   | 2   | -      | -            | 2          | 2        | 3         | 3          | 2       | 2    | 2    | 1    |

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation



| Effective from Sessio                          | <b>n:</b> 2019-2020                           |                     |                                                          |          |         |         |    |  |
|------------------------------------------------|-----------------------------------------------|---------------------|----------------------------------------------------------|----------|---------|---------|----|--|
| Course Code                                    | CH513                                         | Title of the Course | Organic reaction, reagents & heterocyclic chemistry      | T        | P       | C       |    |  |
| Year                                           | Second                                        | Semester            | Third                                                    | 3        | 1       | 0       | 4  |  |
| Pre-Requisite BSc. with Chemistry Co-requisite |                                               |                     |                                                          |          |         |         |    |  |
| Course Objectives                              | To understand organic chemical reactions of h | ,                   | ment and its mechanism, Use of reagents in organic synth | nesis, p | orepara | tion an | ıd |  |

|             |                                                                                                                          | Course Outcomes                                                                                                                                                                                                                                                                                                            |               |              |  |  |  |  |  |  |  |
|-------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|--|--|--|--|--|--|--|
| CO1         |                                                                                                                          | of some name reactions such as Mannich reaction, Stork Enamine reaction, Shapiro reaction, P ion, Dieckmann condensation and Knoevenagel condensation                                                                                                                                                                      | erkin reactio | n, Sharpless |  |  |  |  |  |  |  |
| CO2         |                                                                                                                          | sm of some important rearrangement like Pinacol-pinacolone rearrangements, Benzil-Benzits, Schmidt reaction, Lossen rearrangements, Baeyer Villiger reaction and Favorskii rearrangements.                                                                                                                                 |               | rangements,  |  |  |  |  |  |  |  |
| CO3         | Analyze and compare acylation etc.                                                                                       | e the uses of some important reagents in organic transformation like oxidation, reduction,                                                                                                                                                                                                                                 | dehydration,  | alkylation,  |  |  |  |  |  |  |  |
| CO4         | Evaluate the methods for the synthesis of some important five membered heterocyclic compounds and its chemical reaction. |                                                                                                                                                                                                                                                                                                                            |               |              |  |  |  |  |  |  |  |
| CO5         | Comprehension for th                                                                                                     | e synthesis of some important six membered heterocyclic compounds and its chemical reaction.                                                                                                                                                                                                                               |               |              |  |  |  |  |  |  |  |
| Unit<br>No. | Title of the Unit                                                                                                        | Contact<br>Hrs.                                                                                                                                                                                                                                                                                                            | Mapped<br>CO  |              |  |  |  |  |  |  |  |
| 1           | Name reactions                                                                                                           | Mannich reaction, Stobbe condensation, Stork Enamine reaction, Shapiro reaction, Perkin reaction, Woodward hydroxylation, Prevost hydroxylation, Robinson annulations, Sharpless Asymmetric Epoxidation, Ullmann reaction, Benzoin condensation, Dieckmann condensation and Knoevenagel condensation                       | 8             | 1            |  |  |  |  |  |  |  |
| 2           | Rearrangements                                                                                                           | Pinacol-pinacolone rearrangements, Wagner-Meerwein rearrangements, Benzil-Benzilic acid rearrangements, Sommelet Hauser rearrangements, Curtius rearrangements, Schmidt reaction, Lossen rearrangements, Neber rearrangements, Baeyer Villiger reaction and Favorskii rearrangements                                       | 8             | 2            |  |  |  |  |  |  |  |
| 3           | Reagents                                                                                                                 | Use of following reagents in organic synthesis: Dicyclohexylcarbodiimide (DCC), Gilman's reagent (lithium dimethyl cuprate), Lithium aluminium hydride (LiAlH4), Sodium borohydride (NaBH4), Lithium diisopropylamide (LDA), trimethylsilyl iodide, Wilkinson's catalyst, Pyridinium Chlorochromate (PCC), Perbenzoic acid | 8             | 3            |  |  |  |  |  |  |  |
| 4           | Introduction to<br>condensed five<br>membered<br>heterocycles                                                            | Introduction of petroleum refining, cracking, application of cracking, synthetic petrol, Bergius process, Fischer-Tropsh process, octane number, flash point, determination of flash point, synthesis of pure chemicals from petrochemicals.                                                                               | 8             | 4            |  |  |  |  |  |  |  |
| 5           | Introduction to<br>condensed six<br>membered<br>heterocycles                                                             | Methods of synthesis with special reference to Knorr synthesis, Pall-Knorr synthesis and Hantzsch synthesis, chemical reactions of pyrrole, furan and thiophene, mechanism of electrophilic substitution reactions of pyrrole, furan and thiophene                                                                         | 8             | 5            |  |  |  |  |  |  |  |

#### **Reference Books:**

 $Advanced\ Organic\ Chemistry\ (Reactions,\ Mechanisms\ and\ Structure):\ Michel\ B.\ Smith\ and\ Jerry\ March,\ 4th\ Edition,\ Wiley\ Interscience\ Publication.$ 

A Guidebook to Mechanism in Organic Chemistry by Peter Sykes, Six edition, Pearson publication.

Organic Chemistry by Robert Thornton Morrison, Robert Neilson Boyd, and Saibal Kanti Bhattacharjee, Seventh edition, Pearson publication.

Organic Chemistry by Jonathan Clayden, Nick Greeves, and Stuart Warren, Second edition, Oxford Publication.

#### e-Learning Source:

https://www.organic-chemistry.org/namedreactions/beckmann-rearrangement.shtm

https://www.youtube.com/watch?v=F\_xKfs4gzLg

https://nptel.ac.in/courses/104/103/104103111/

https://www.youtube.com/watch?v=lG-4TJsAwGY

| •      |     |     |     |        |              |            |          |           |            |         |      |      |      |
|--------|-----|-----|-----|--------|--------------|------------|----------|-----------|------------|---------|------|------|------|
|        |     |     |     | Course | Articulation | on Matrix: | (Mapping | of COs wi | th POs and | d PSOs) |      |      |      |
| PO-PSO | PO1 | PO2 | PO3 | PO4    | PO5          | PO6        | PO7      | PO8       | PSO1       | PSO2    | PSO3 | PSO4 | PSO5 |
| CO     |     |     |     |        |              |            |          |           |            |         |      |      |      |
| CO1    | 3   | 2   | 2   | -      | 1            | 3          | 3        | 3         | -          | -       | -    | -    | -    |
| CO2    | 3   | 2   | 2   | -      | 1            | 2          | 2        | 2         | -          | -       | -    | -    | -    |
| CO3    | 3   | 2   | 3   | -      | 1            | 3          | 2        | 3         | -          | -       | -    | -    | -    |
| CO4    | 3   | 2   | 3   | -      | 1            | 3          | 3        | 2         | -          | -       | -    | -    | -    |
| CO5    | 3   | 2   | 1   | -      | 1            | 3          | 2        | 1         | -          | -       | -    | -    | -    |

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation



| Effective from Sessio | Effective from Session: 2019-2020 |                                                                                                                       |                                                          |         |          |        |      |  |  |  |  |  |
|-----------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------|----------|--------|------|--|--|--|--|--|
| Course Code           | CH514                             | Title of the Course                                                                                                   | Chemical Kinetics And Chemical Equilibrium               | L       | T        | P      | C    |  |  |  |  |  |
| Year                  | Second                            | Semester                                                                                                              | Third                                                    | 3       | 1        | 0      | 4    |  |  |  |  |  |
| Pre-Requisite         | B.Sc. with Chemistry              | . with Chemistry Co-requisite Elementary Mathematics                                                                  |                                                          |         |          |        |      |  |  |  |  |  |
|                       | This course is designed           | for postgraduate studer                                                                                               | its of chemistry as a broad base introduction to chemic  | al kine | etics an | d chem | ical |  |  |  |  |  |
| Course Objectives     | equilibrium. After succe          | uilibrium. After successfully completion of course, the student will able understand the chemical dynamics of complex |                                                          |         |          |        |      |  |  |  |  |  |
|                       | reaction and their mecha          | nism. Interestingly, it al                                                                                            | so deals with homogenous catalysis and its applications. |         |          |        |      |  |  |  |  |  |

|     | Course Outcomes                                                                                                                                                                                                                                                                  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1 | Students would able to analyze theories of reaction rates by taking collision theory of bimolecular reaction and activated complex, as a reference and also understand the how the concentration of inert salt affect the rate of chemical reaction.                             |
| CO2 | Students evaluate fundamentals of Homogeneous catalysis with reference of Enzyme catalysis. They got sound inside of affect solvent on the rate of chemical reaction.                                                                                                            |
| CO3 | Students would develop the concept of chemical dynamics; Lindemann Hinshelwood and Rice-Ramsperger-Kassel-Marcus [RRKM] theory. They got the sound insight of fast reactions by flow method, Relaxation method, and Flash photolysis and their applications in research.         |
| CO4 | Students would develop the concept of spontaneity; $\Delta G$ and how the Van't Hoff equations play very important role in homogeneous as well heterogeneous equilibrium. They got the sound insight with reference of Le-Chatelier's principle and its industrial applications. |
| CO5 | Students would able to illustrate how the ionic strength is affecting activity coefficient and mean activity coefficient of electrolytes. They also got the concept of Debye-Huckel limiting law and its importance.                                                             |

| Unit<br>No. | Title of the Unit          | Content of Unit                                                                                                                                                                                                                                                                                                                                | Contact<br>Hrs. | Mapped<br>CO |
|-------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 1           | Theories of Reaction Rates | Kinetic theory of collision, Steric factor, Extension of collision theory, Conventional transition state theory, Thermodynamics aspects of CTST, Kinetic and thermodynamic control of reactions, Salt effects, Steady state kinetics, Kinetic isotopic effect.                                                                                 | 8               | 1            |
| 2           | Solution Kinetic           | Homogeneous catalysis (acid-base catalysis), Enzyme kinetics – Michaelis-Menten kinetics, Lineweaver-Burk plot, Enzyme inhibition; competitive and noncompetitive, Factors affecting the rate reaction in solutions, Effect of solvent on reaction rates.                                                                                      | 8               | 2            |
| 3           | Chemical Dynamics          | Unimolecular reactions and their treatments (Lindemann Hinshelwood and Rice-Ramsperger-Kassel-Marcus [RRKM] theory), Complex reactions (chain reactions, and oscillatory reactions), Studies of fast reactions by flow method, Relaxation method, Flash photolysis.                                                                            | 8               | 3            |
| 4           | Chemical<br>Equilibrium    | Spontaneity of chemical reactions; Gibbs energy minimum; Perfect gas equilibria; Gibbs free energy change for the reaction and chemical quotient; Expression for thermodynamic equilibrium constant; Equilibrium Calculations, Response of equilibrium to pressure, volume and temperature, The van't Hoff equation, Le-Chatelier's principle. | 8               | 4            |
| 5           | Electrochemistry           | Ionic strength, Activity coefficient and mean activity coefficient of electrolytes, Debye-Hückel theory of strong electrolytes, Debye-Huckel limiting law, Electrified interfaces, Overpotential, Electrolytic conductivity.                                                                                                                   | 8               | 5            |

#### **Reference Books:**

Physical Chemistry, P.W.Atkins and J. D. Paulo, Oxford, 2013, 10th edition New Delhi.

Chemical Kinetics, K.J. Laidler, Mcgraw-Hill.

Physical Chemistry, Geoge Woodbury, Brooks/ Cole Publishing, 1997, Pacific Grove, USA.

Physical Chemistry, T. Engel and P. Reid, Pearson, 2006, 1st edition, New Delhi.

### e-Learning Source:

https://nptel.ac.in/content/storage2/courses/122101001/downloads/lec-32.pdf

https://www.youtube.com/watch?v=gN-yU0MDFzE

https://www.youtube.com/watch?v = c34viSd-dVA

https://www.khanacademy.org/science/chemistry/chemical-equilibrium

|        |     | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |     |     |     |     |     |      |      |      |      |      |  |  |
|--------|-----|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|------|------|------|------|------|--|--|
| PO-PSO | PO1 | PO2                                                            | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |  |  |
| CO     |     |                                                                |     |     |     |     |     |     |      |      |      |      |      |  |  |
| CO1    | 3   | 1                                                              | -   | -   | -   | 2   | 1   | 3   | 3    | 1    | 2    | 2    | 2    |  |  |
| CO2    | 3   | 1                                                              | ı   | ı   | ı   | 2   | 2   | 3   | 3    | 2    | 3    | 3    | 3    |  |  |
| CO3    | 3   | 1                                                              | ı   | ı   | ı   | 2   | 2   | 3   | 2    | 1    | 2    | 2    | 2    |  |  |
| CO4    | 3   | 1                                                              | 1   | -   | -   | 2   | 1   | 3   | 2    | 1    | 2    | 2    | 2    |  |  |
| CO5    | 3   | 1                                                              | -   | -   | -   | 1   | 3   |     | 3    | 2    | 3    | 2    | 2    |  |  |

| Name & Sign of Program Coordinator | Sign & Seal of HoD |
|------------------------------------|--------------------|



| Effective from Session: 2019-2020 |                                                    |                                                                                                                              |                                              |   |   |   |   |  |  |  |  |  |
|-----------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---|---|---|---|--|--|--|--|--|
| Course Code                       | CH515                                              | Title of the Course                                                                                                          | Inorganic Reactions, Mechanism And Catalysis | L | T | P | C |  |  |  |  |  |
| Year                              | Second                                             | Semester                                                                                                                     | Third                                        | 3 | 1 | 0 | 4 |  |  |  |  |  |
| Pre-Requisite                     | B.Sc. with Chemistry                               | Co-requisite                                                                                                                 |                                              |   |   |   |   |  |  |  |  |  |
| Course Objectives                 | To comprehend inorganic r bio-inorganic chemistry. | To comprehend inorganic reaction mechanisms, influencing factors, and the significance of inorganic elements in context with |                                              |   |   |   |   |  |  |  |  |  |

|     | Course Outcomes                                                                                                                                                       |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1 | Explanation of the basic concepts related to stability of coordination complexes and an elementary idea will be imparted regarding the basics of reaction mechanisms. |
| CO2 | Detailed study and analysis of reaction mechanisms in coordination complexes will be discussed along with the factors affecting the rate of reactions.                |
| CO3 | Inculcation of higher order thinking ability in students to comprehend the inner and outer sphere reactions.                                                          |
| CO4 | Set the overture of Bio-inorganic chemistry along with the elucidation of the role of inorganic elements in the metabolism.                                           |
| CO5 | Comprehension of the structure, functioning and role of important bio-inorganic moieties as well as the role of metal ions in body.                                   |

| Unit<br>No. | Title of the Unit                                                                     | Content of Unit                                                                                                                                                                                                                                                                                           | Contact<br>Hrs. | Mapped<br>CO |
|-------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 1           | Types of Mechanisms                                                                   | Basic concepts as kinetic and thermodynamic stability and lability, stability constants; HSAB principle, Factors affecting the stability of complexes with special emphasis to chelate effect and macrocyclic effect.                                                                                     | 8               | 1            |
| 2           | Substitution<br>Reactions in<br>Coordination<br>Compounds                             | Substitution reactions in coordination compounds: Substitution reactions in square planar complexes, Trans effect, trans series, Substitution in octahedral complexes, SN1, SN2, SNICB mechanisms, steric effects on substitutions.                                                                       | 8               | 2            |
| 3           | Ligand Transfer and<br>Electron Transfer<br>Reactions in<br>Coordination<br>Compounds | Inner and outer sphere reactions, Electron Transfer reactions, Potential energy diagrams as a conceptual tool, Marcus equation, Types of and factors affecting electron transfer reactions.                                                                                                               | 8               | 3            |
| 4           | Metal Ions in<br>Biological Systems                                                   | Essential and trace metals. Vitamin B12, methyl cobalamine, Biomethylation. Biological nitrogen fixation, molybdenum nitrogenase, spectroscopic and other evidence, other nitrogenases model systems.                                                                                                     | 8               | 4            |
| 5           | Important<br>Biomolecules                                                             | Heme proteins and oxygen uptake, structure and function of hemoglobin, myoglobin, homocyanins and hemerythrin, model synthetic complexes of iron, and copper Electron Transfer in Biology Structure and function of metalloproteins in electron transport processes-cytochromes and ion sulphur proteins. | 8               | 5            |

#### Reference Books:

Inorganic Chemistry – Principles of Structure and Reactivity", J. E. Huheey, E. A. Keiter and R. L. Keiter, 4th edition. Harper Collins College Publ. New York.

Mechanism of Inorganic Reactions in Solution - An Introduction", D. Benson, McGraw - Hill.

Mechanisms of Inorganic Reactions, by C.F.Basolo and R.G.Pearson, Wiley, New York.

d- and f- block Chemistry, C. J. Jones, Tutorial Chemistry Texts, E. W. Abel (Ed.), Royal Society of Chemistry, Cambridge.

#### e-Learning Source:

https://www.youtube.com/watch?v=dFfv\_jC3\_ZY

https://bnmu.ac.in/DetailOnline.aspx?Id=388

https://link.springer.com/chapter/10.1007/978-94-011-0255-1\_17

|              |     | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |     |     |     |     |     |      |      |      |      |      |
|--------------|-----|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| PO-PSO<br>CO | PO1 | PO2                                                            | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| CO1          | 3   | -                                                              | -   | -   | -   | 2   | -   | 3   | 3    | -    | 3    | 3    | -    |
| CO2          | 3   | -                                                              | -   | -   | -   | 2   | -   | 3   | 2    | -    | 3    | 3    | -    |
| CO3          | 3   | -                                                              | -   | -   | -   | 2   | -   | 3   | 3    | -    | 3    | 2    | -    |
| CO4          | 3   | -                                                              | -   | 1   | 1   | 2   | 1   | 3   | 2    | 1    | 3    | 2    | -    |
| CO5          | 3   | -                                                              | -   | -   | -   | 2   | -   | 3   | 2    | -    | 3    | 2    | -    |

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation



| Effective from Session: 2019-2020 |                                                    |                                                        |                                                                                                                                                                                                                            |                  |                   |        |                 |  |  |  |  |  |
|-----------------------------------|----------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|--------|-----------------|--|--|--|--|--|
| Course Code                       | CH516                                              | Title of the Course                                    | Quantum Chemistry: A Molecular Approach                                                                                                                                                                                    | L                | T                 | P      | C               |  |  |  |  |  |
| Year                              | Second                                             | Semester                                               | Semester Third 3 1                                                                                                                                                                                                         |                  |                   |        |                 |  |  |  |  |  |
| Pre-Requisite                     | B.Sc. with Chemistry                               | Co-requisite                                           | Elementary Mathematics                                                                                                                                                                                                     |                  |                   |        |                 |  |  |  |  |  |
| Course Objectives                 | well as chemical reactive hands-on experience. The | ity. It introduces the mat<br>ne main objective of com | as a tool to understand atomic and molecular structu<br>hematical foundations of a variety of wave function<br>putational chemistry is to solve chemical problems<br>or to provide reliable, accurate and comprehensive in | s as w<br>by sin | ell as<br>nulatin | a prac | tical,<br>nical |  |  |  |  |  |

|             |                                       | Course Outcomes                                                                                                                                                                                                                                                                                            |                 |              |  |  |  |  |  |  |  |  |
|-------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|--|--|--|--|--|--|--|--|
| CO1         | Apply the knowledge                   | of matrices to solve the problems.                                                                                                                                                                                                                                                                         |                 |              |  |  |  |  |  |  |  |  |
| CO2         | Understand the basic                  | concepts and ideas of Quantum Mechanics.                                                                                                                                                                                                                                                                   |                 |              |  |  |  |  |  |  |  |  |
| CO3         | _                                     | Solve the time dependent Schrödinger-equation for discrete two-level systems and being able to apply this to simple problems involving electron spin and photon polarization.                                                                                                                              |                 |              |  |  |  |  |  |  |  |  |
| CO4         | Apply the technique of                | Apply the technique of separation of variables to solve problems in more than one dimension and to understand the role of degeneracy in the occurrence of electron shell structure in atoms.                                                                                                               |                 |              |  |  |  |  |  |  |  |  |
| CO5         | To understand analysi                 | Γο understand analysis of indeterminate structures and adopt an appropriate structural analysis technique                                                                                                                                                                                                  |                 |              |  |  |  |  |  |  |  |  |
| Unit<br>No. | Title of the Unit Content of Unit     |                                                                                                                                                                                                                                                                                                            | Contact<br>Hrs. | Mapped<br>CO |  |  |  |  |  |  |  |  |
| 1           | Elementary<br>Mathematical<br>Concept | Matrices (2x2, 3x3) only, Multiplication, inverse of matrix, (identity matrix) 2x2, 2x3,3x3), commutative properties of matrices, complex number Z and its complex conjugate Z*, Expansion of series [ex, sinx, cosx, ln(1+x), , ln(1-x)], stirling approximation,                                         | 8               | 1            |  |  |  |  |  |  |  |  |
| 2           | Introductory<br>Quantum<br>Mechanics  | Black-body radiation, Planck's radiation law, photoelectric effect, heat capacity of solids, Bohr's model of hydrogen atom (without derivation) their solution of overall solution and its defects, Compton effect, de-Broglie's hypothesis, the Heisenberg's uncertainty principle, Hamiltonian Operator. | 8               | 2            |  |  |  |  |  |  |  |  |
| 3           | Elementary<br>Quantum<br>Mechanics-I  | Quantum quantum mechanical quantum mechanical quantum operator, commutation of operators. Time dependent and time independent Schrödinger                                                                                                                                                                  |                 | 3            |  |  |  |  |  |  |  |  |
| 4           | Elementary Quantum Mechanics-II       | Particle in a one dimensional box, physical interpretation of the wave function, radial node, wave function and shape of orbital, radial probability density, Angular momentum in quantum mechanics (Lx, Ly, Lz), Harmonic oscillator, Rigid rotor.                                                        | 8               | 4            |  |  |  |  |  |  |  |  |
|             |                                       | The variation theorem, Perturbation theory (first order and non- degenerate). Applications of                                                                                                                                                                                                              |                 |              |  |  |  |  |  |  |  |  |

variation method and pertubation theory of the Hydrogen atom. Molecular Orbital Theory

Huckel theory of conjugated systems, Bond order and charge density calculations,

Applications to ethylene, butadiene, cyclopropenyl radical, cyclobutadiene etc.

8

5

#### **Reference Books:**

5

Physical Chemistry, P.W. Atkins, Oxford Press. 7thEdn.

Introduction to Quantum Chemistry, A.K. Chandra, Tata McGraw Hill.

Quantum Chemistry, Ira N. Levine, Prentice Hall.

Approximation

Methods

Modern Spectroscopy, J.M. Hollas, John Wiley.

### e-Learning Source:

https://www.khanacademy.org/math/precalculus/x9e81a4f98389efdf: matrices/x9e81a4f98389efdf: mat-intro/a/intro-to-matrices/x9e81a4f98389efdf: mat-intro/a/intro-to-matrices/x9e81a4f98389efdf: mat-intro/a/intro-to-matrices/x9e81a4f98389efdf: mat-intro/a/intro-to-matrices/x9e81a4f98389efdf: mat-intro/a/intro-to-matrices/x9e81a4f98389efdf: mat-intro/a/intro-to-matrices/x9e81a4f98389efdf: mat-intro/a/intro-to-matrices/x9e81a4f98389efdf: mat-intro/a/intro-to-matrices/x9e81a4f98389efdf: mat-intro-fo-matrices/x9e81a4f98389efdf: mat-intro-fo-matrices/x9e81a4f989effd: mat-intro-fo-matrices/x9e81a4f98effd: mat-intro-fo-matrices/x9e81a4f98effd: mat-intro-fo-matrices/x9e81a4f98effd:

https://www.youtube.com/watch?v=8JF6lvPBAzk

https://nptel.ac.in/noc/courses/noc17/SEM1/noc17-ph03/

https://www.youtube.com/watch?v=SQmj5jT2VLU

|        | mepon, www.youtubercom watern, beinger 12, 20 |                                                                |     |     |     |     |     |     |      |      |      |      |      |
|--------|-----------------------------------------------|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
|        |                                               | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |     |     |     |     |     |      |      |      |      |      |
| PO-PSO | PO1                                           | PO2                                                            | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| CO     | 101                                           | 102                                                            | 103 | 104 | 103 | 100 | 107 | 108 | 1301 | 1302 | 1303 | 1304 | 1505 |
| CO1    | 3                                             | 1                                                              | -   | -   | -   | 1   | 1   | 3   | 3    | 1    | 2    | 3    | 2    |
| CO2    | 3                                             | 1                                                              | -   | -   | -   | 2   | 1   | 3   | 3    | 1    | 2    | 2    | 3    |
| CO3    | 3                                             | 1                                                              | -   | -   | -   | 2   | 1   | 3   | 3    | 1    | 2    | 2    | 2    |
| CO4    | 3                                             | 1                                                              | -   | -   | -   | 2   | 1   | 3   | 3    | 1    | 2    | 2    | 2    |
| CO5    | 3                                             | 1                                                              | -   | -   | -   | 2   | 1   | 3   | 3    | 1    | 2    | 2    | 3    |

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation



| Effective from Ses | Effective from Session: 2019-2020 |                         |                                                                                                                          |   |   |   |   |  |  |  |  |
|--------------------|-----------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------|---|---|---|---|--|--|--|--|
| Course Code        | CH506                             | Title of the Course     | Bioinorganic And Supramolecular Chemistry                                                                                | L | T | P | C |  |  |  |  |
| Year               | Second                            | Semester Third 3 1 0    |                                                                                                                          |   |   |   |   |  |  |  |  |
| Pre-Requisite      | BSc. with Chemistry               | Co-requisite            |                                                                                                                          |   |   |   |   |  |  |  |  |
| Course Objectives  |                                   | als of molecular recogn | of the chemistry of d-block metals in metalloproteins and on ition, interactions responsible for the formation of supram |   |   |   |   |  |  |  |  |

|     | Course Outcomes                                                                          |
|-----|------------------------------------------------------------------------------------------|
| CO1 | Student would be able to understand the role of ions in biological system.               |
| CO2 | Students evaluate fundamentals of enzyme reactions and metalloenzymes.                   |
| CO3 | Students would develop the concept of metal acid reactions, and administration of drugs. |
| CO4 | Students would restate difference between different modes of molecular reactions.        |
| CO5 | Students would able to apply the concepts of supramolecular chemistry.                   |

| Unit<br>No. | Title of the Unit                                      | Content of Unit                                                                                                                                                                                                                                                                                                                                                                     | Contact<br>Hrs. | Mapped<br>CO |
|-------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 1           | Metal ions in<br>Biological functions                  | A brief introduction to bio-inorganic chemistry. Role of metal ions present in biological systems with special reference to Na <sup>+</sup> , K <sup>+</sup> and Mg <sup>2+</sup> ions: Na/K pump; Role of Mg <sup>2+</sup> ions in energy production and chlorophyll. Role of Ca <sup>2+</sup> in blood clotting, stabilization of protein structures and structural role (bones). | 8               | 1            |
| 2           | Metalloenzymes                                         | Enzyme, coenzyme, apoenzyme and holoenzyme, Zinc enzymes: carboxypeptidase, carbonic anhydrase and alcohol dehydrogenase. Iron enzymes-catalase and peroxidase. Copper enzymes -superoxide dismutase. Molybdenum enzymes -xanthine oxidase.                                                                                                                                         | 8               | 2            |
| 3           | Metal-Nucleic Acid<br>Interactions                     | Metals used for diagnosis and chemotherapy with particular reference to anticancer drugs. cis-platin- indication and contra indications. Administration of drug and its antidote. Reaction, use of antihistamine, mannitol, epinephrine and steroid preparation of drug administration.                                                                                             | 8               | 3            |
| 4           | Supramolecular<br>Chemistry                            | Concepts and language. Molecular recognition: Molecular receptors for different types of molecules including arisonic substrates, design and synthesis of coreceptor molecules and multiple recognition.                                                                                                                                                                            | 8               | 4            |
| 5           | Applications of<br>Supramolecular<br>Species/Compounds | (A) Supramolecular reactivity and catalysis. (B) Transport processes and carrier design. (C) Supramolecular devices. Supramolecular photochemistry, supramolecular electronic, ionic and switching devices. (D) Some example of self-assembly in supramolecular chemistry.                                                                                                          | 8               | 5            |

#### **Reference Books:**

Principles of Bioinorganic Chemistry, S.J. Lippard and J.M. Berg, University Science Books.

Bioinorganic Chemistry, I. Bertini, H.B. Gray, S.J. Lippard and J.S. Valentine, University

Inorganic Biochemistry vols I and II. ed. G.L. Eichhorn, Elsevier.

Progress in Inorganic Chemistry, Vols 18 and 38 eds. J.J. Lippard, Wiley.

Supramolecular Chemistry, J.M. Lehn, VCH.

Bioinorganic Chemistry, M.N. Hughes, Wiley.

#### e-Learning Source:

 $http://chemistry.du.ac.in/study\_material/4102-B/1.\%20 Role\%20 of \%20 Metal\%20 Ions\%20 in \%20 Biological\%20 Systems.pdf$ 

https://www.rsc.org/events/detail/46673/natural-and-artificial-metalloenzymes-faraday-discussion

 $https://www.youtube.com/watch?v{=}1Wc4jTH2v\_w$ 

 $https://www.youtube.com/watch?v=QQRpcot0k\_I$ 

https://www.frontiersin.org/journals/chemistry/sections/supramolecular-chemistry

| 1      | · · · · · · · · · · · · · · · · · · · |     |     |        |             |            |          |           |            |         |      |      |      |  |
|--------|---------------------------------------|-----|-----|--------|-------------|------------|----------|-----------|------------|---------|------|------|------|--|
|        |                                       |     |     | Course | Articulatio | on Matrix: | (Mapping | of COs wi | ith POs an | d PSOs) |      |      |      |  |
| PO-PSO | PO1                                   | PO2 | PO3 | PO4    | PO5         | PO6        | PO7      | PO8       | PSO1       | PSO2    | PSO3 | PSO4 | PSO5 |  |
| CO     |                                       |     |     |        |             |            |          |           |            |         |      |      |      |  |
| CO1    | 3                                     | 1   | 2   | -      | -           | 2          | 1        | 3         | 3          | 1       | 3    | 2    | 3    |  |
| CO2    | 3                                     | 1   | 1   | -      | -           | 3          | 1        | 3         | 3          | 1       | 3    | 3    | 3    |  |
| CO3    | 3                                     | 1   | 1   | -      | 1           | 3          | 1        | 3         | 3          | 1       | 3    | 3    | 2    |  |
| CO4    | 3                                     | 1   | 1   | -      | -           | 3          | 1        | 3         | 3          | 1       | 3    | 3    | 1    |  |
| CO5    | 3                                     | 1   | 1   | -      | -           | 3          | 1        | 3         | 3          | 1       | 3    | 3    | 1    |  |

| Name & Sign of Program Coordinator | Sign & Seal of HoD |
|------------------------------------|--------------------|



| Effective from Sessi | Effective from Session:2015-16                                       |                                |                            |   |   |   |   |  |  |  |  |  |  |
|----------------------|----------------------------------------------------------------------|--------------------------------|----------------------------|---|---|---|---|--|--|--|--|--|--|
| Course Code          | CH517                                                                | Title of the Course            | Chemistry Lab Practicals-3 | L | T | P | C |  |  |  |  |  |  |
| Year                 | Second                                                               | Semester                       | Third                      | 0 | 0 | 8 | 4 |  |  |  |  |  |  |
| Pre-Requisite        | BSc. with Chemistry                                                  | c. with Chemistry Co-requisite |                            |   |   |   |   |  |  |  |  |  |  |
| Course Objectives    | <ul><li>Developmer</li><li>Ability to w</li><li>Developing</li></ul> |                                |                            |   |   |   |   |  |  |  |  |  |  |

|     | Course Outcomes                                             |  |  |  |  |  |  |  |  |  |
|-----|-------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| CO1 | Preparation of polymers.                                    |  |  |  |  |  |  |  |  |  |
| CO2 | Preparation of cosmetic products.                           |  |  |  |  |  |  |  |  |  |
| CO3 | Estimation of key ingredients present in cosmetic products. |  |  |  |  |  |  |  |  |  |
| CO4 | Analysis of food samples.                                   |  |  |  |  |  |  |  |  |  |
| CO5 | Estimation of food samples.                                 |  |  |  |  |  |  |  |  |  |

| Exp. No. | Title of the Experiment      | Content of unit                                                                                                                            | Contact<br>Hrs. | Mapped<br>CO |
|----------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 1        | Phenol formaldehyde resin.   | Preparation of Phenol formaldehyde resin.                                                                                                  | 4               | 1            |
| 2        | Urea formaldehyde resin.     | Preparation of Urea formaldehyde resin.                                                                                                    | 4               | 1            |
| 3        | Nylon 66.                    | Preparation of Nylon 66.                                                                                                                   | 4               | 1            |
| 4        | Dibenzal acetone             | Synthesis of Dibenzal acetone from benzaldehyde.                                                                                           | 2               | 2            |
| 5        | p-chlorotoluene              | Sandmeyer reaction: p-chlorotoluene from p-toluidine.                                                                                      | 2               | 2            |
| 6        | Hydrolysis                   | Compare the strength of HCl and H <sub>2</sub> SO <sub>4</sub> by studying the rate of hydrolysis of methyl acetate.                       | 2               | 3            |
| 7        | Sugar/glucose                | Determination of sugar/glucose content in the given sample of food.                                                                        | 2               | 3            |
| 8        | Ascorbic acid                | Estimation of ascorbic acid in the given fruit juice.                                                                                      | 4               | 3            |
| 9        | Cobalt (II) Chloride Complex | Observe the effect of (Temperature) on equilibrium systems on Cobalt (II)<br>Chloride Complex                                              | 4               | 4            |
| 10       | Solubility product           | To determine the solubility product for sparingly soluble salt (e.g. lead sulphate or bariu Sulfate).                                      | 2               | 4            |
| 11       | Effect of concentration      | Effect of concentration: The purpose of this part is to observe the effect of certain stresses (ion concentration) on equilibrium systems. | 2               | 5            |
| 12       | Equilibrium                  | The equilibrium between Fe3+ and Fe(CNS) <sup>2+</sup> .                                                                                   | 2               | 5            |

#### **Reference Books:**

Advance Practical Chemistry: Jagdamba Singh, L.D.S Yadav, Jaya Singh, I.R. Siddiqui, Pragati Edition.

# e-Learning Source:

https://youtu.be/r2LZxmLtdqU

https://youtube.com/watch?v=q8IMKft663I&feature=share

https://youtu.be/eA9I2MkWMW0

https://youtu.be/gYg2sFqkptc

|              | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |     |     |     |     |     |     |      |      |      |      |      |  |
|--------------|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|--|
| PO-PSO<br>CO | PO1                                                            | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |  |
| CO1          | 3                                                              | 1   | -   | -   | 1   | 3   | 2   | 3   | 3    | 2    | 2    | 2    | 2    |  |
| CO2          | 3                                                              | 1   | -   | -   | 1   | 2   | 3   | 3   | 3    | 2    | 2    | 2    | 2    |  |
| CO3          | 3                                                              | 1   | -   | -   | 1   | 2   | 2   | 3   | 3    | 2    | 2    | 2    | 2    |  |
| CO4          | 3                                                              | 1   | -   | -   | 1   | 3   | 2   | 3   | 3    | 2    | 2    | 2    | 2    |  |
| CO5          | 3                                                              | 1   | -   | -   | 1   | 3   | 2   | 3   | 3    | 2    | 2    | 2    | 2    |  |

| Name & Sign of Program Coordinator | Sign & Seal of HoD |
|------------------------------------|--------------------|

# Department of Chemistry **Study and Evaluation Scheme**

Program: Master of Science (Chemistry)

Year: Second / Semester: Fourth

|       |             |                                                |               | Peri | od/ hr./ | week | E  | valuati | on Sche | me  |                  |                  |               |                  | At                   | tribut          | es                           |             |                     | able                                   |                              |
|-------|-------------|------------------------------------------------|---------------|------|----------|------|----|---------|---------|-----|------------------|------------------|---------------|------------------|----------------------|-----------------|------------------------------|-------------|---------------------|----------------------------------------|------------------------------|
| S. No | Course code | Course Title                                   | Type of Paper | L    | Т        | P    | CA | ТА      | Total   | ESE | Subject<br>Total | Total<br>Credits | Employability | Entrepreneurship | Skill<br>Development | Gender Equality | Environment & Sustainability | Human Value | Professional Ethics | United Nations Sustainable Development | Goals (SDGs)                 |
| 1.    | CH518       | Molecular Spectroscopy and Spectral Techniques | Core          | 03   | 01       | 00   | 40 | 20      | 60      | 40  | 100              | 4                | <b>√</b>      |                  |                      |                 |                              | ✓           | <b>✓</b>            | -                                      | -                            |
| 2.    | CH509       | Green Chemistry                                | Elective      | 02   | 0.1      | 00   | 40 | 20      |         | 40  | 100              |                  | <b>√</b>      | <b>√</b>         | <b>✓</b>             |                 | ✓                            |             |                     | Climate Action                         | 13 CLIMATE ACTION            |
| 3.    | CH519       | Computational Methods in Chemistry             | Elective      | 03   | 01       | 00   | 40 | 20      | 60      | 40  | 100              | 4                | <b>√</b>      | <b>√</b>         | <b>~</b>             |                 | <b>✓</b>                     | <b>√</b>    | <b>✓</b>            | Good Health<br>and Well-being          | 3 GOOD HEALTH AND WELL-BEING |
| 4.    | CH520       | Seminar                                        | Core          | 00   | 00       | 04   | 00 | 00      | 00      | 100 | 100              | 2                |               |                  | <b>✓</b>             |                 |                              |             | <b>√</b>            | -                                      | -                            |
| 5.    | *CH521      | Project Training and Evaluation                | Core          | 00   | 00       | 00   | 00 | 00      | 00      | 300 | 300              | 10               | ✓             | ✓                | ✓                    |                 | ✓                            | ✓           | <b>√</b>            | -                                      | -                            |
|       |             |                                                | Total         | 06   | 02       | 04   | 80 | 40      | 120     | 480 | 600              | 20               |               |                  |                      |                 |                              |             |                     |                                        |                              |

L = Lecture, T = Tutorial, P = Practical, CA = Continuous Assessment, TA = Teacher's Assessment, ESE = End Semester Examination; Sessional = CT+TA; Subject Total = Sessional + ESE

#### \* The Evaluation scheme for the Industrial Training:

| Course Title                       | Course Code | Dissertation | Presentation | Viva/Discussion | Total |
|------------------------------------|-------------|--------------|--------------|-----------------|-------|
| Project Training and<br>Evaluation | CH521       | 200          | 50           | 50              | 300   |



| Effective from Session   | Effective from Session: 2019-2020 |                     |                                                                                                                |   |   |   |   |  |  |  |  |  |
|--------------------------|-----------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------|---|---|---|---|--|--|--|--|--|
| Course Code              | CH518                             | Title of the Course | Molecular Spectroscopy And Spectral Techniques                                                                 | L | T | P | C |  |  |  |  |  |
| Year                     | Second                            | Semester            | Fourth                                                                                                         | 3 | 1 | 0 | 4 |  |  |  |  |  |
| Pre-Requisite            | B.Sc. with Chemistry              | Co-requisite        | Elementary Physics                                                                                             |   |   |   |   |  |  |  |  |  |
| <b>Course Objectives</b> |                                   |                     | ts a concept about how to commonly used molecular spenethods and their usage in molecular and electronic struc |   |   |   |   |  |  |  |  |  |

|     | Course Outcomes                                                                                                                                   |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1 | To understand the significance of group theory for chemistry, which allow the prediction of many molecular properties.                            |
| CO2 | Can explain vibrating diatomic molecule, energy levels of a diatomic molecule, simple harmonic and anharmonic oscillator, Scattering of light     |
| CO2 | and Raman Spectrum. rotational and vibrational Raman Spectra and PQR branches.                                                                    |
| CO3 | Understand rotational spectra of rigid diatomic molecules, selection rules, interaction of spectral lines.                                        |
| CO4 | To learn Basic principles, Zero field splitting and Kramer's degeneracy, Factors affecting the 'g' value, hyperfine coupling constants, hyperfine |
| CO4 | splitting, Spin, Hamiltonian, Measurement techniques.                                                                                             |
| CO5 | Students will be able to understand the basics of Mossbauer/ NRF spectroscopy.                                                                    |

| Unit<br>No. | Title of the Unit                          | Content of Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Contact<br>Hrs. | Mapped<br>CO |
|-------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 1           | Concept of Group<br>theory in Chemistry    | Symmetry elements and symmetry operation, definitions of group, subgroup, relation between orders of a finite group and its subgroup. Conjugacy relation and classes. Point symmetry group. Schonflies symbols, representations of groups: Cn, Cnv, Cnh, Dnh etc. Character table                                                                                                                                                                                           | 8               | 1            |
| 2           | Vibrational<br>Spectroscopy                | Review of linear harmonic oscillator, energy levels of simple harmonic oscillator, selection rules, pure vibrational spectrum, intensity, determination of force constant and qualitative relation of force constant and bond energies, effect of anharmonic motion and isotope on the spectrum, idea of vibrational frequencies of different functional groups., morse potential energy diagram, Franck Condon Principle, vibrational-rotation spectroscopy, PQR branches. | 8               | 2            |
| 3           | Rotational<br>Spectroscopy                 | Classification of molecules, rigid rotor model, energy levels of a rigid rotor (semi-classical principles), selection rules, spectral intensity, distribution using population distribution (Maxwell-Boltzmann distribution) determination of bond length, qualitative description of non-rigid rotor, isotope effect, stark effect and applications                                                                                                                        | 8               | 3            |
| 4           | Electron Spin<br>Resonance<br>Spectroscopy | Basic principles, Zero field splitting and Kramer's degeneracy, Factors affecting the 'g' value, hyperfine coupling constants, hyperfine splitting, Spin, Hamiltonian, Measurement techniques, calculation of number of signal, degeneracy, Applications.                                                                                                                                                                                                                   | 8               | 4            |
| 5           | Mossbauer<br>Spectroscopy                  | Basic principles of Mossbauer/ NRF spectroscopy, Isomer shift and nuclear Zeeman splitting, spectral parameters and spectrum display. Application of the technique to the studies of (1) bonding and structures of Fe2+ and Fe3+ compounds including those of intermediate spin, (2) Sn2+ and Sn4+ compounds-nature of M-L bond, coordination number, structure                                                                                                             | 8               | 5            |

#### **Reference Books:**

Physical Chemistry, P.W. Atkins, ELBS

Quantum Chemistry, By I.R.N. Levine, Privatice, Hall of India Ltd.

Quantum Chemistry, By R.K. Prasad, new age International.

Banwell C. N.; McCash, E. M., Fundamentals of Molecular Spectroscopy, 4th Ed., Tata McGraw Hill, New Delhi (2017).

#### e-Learning Source:

https://www.youtube.com/watch?v=WukUvN721Ag

https://study.com/academy/lesson/vibrational-spectroscopy-definition-types.html

https://www.youtube.com/watch?v = dU38K-5-j1g

https://www.youtube.com/watch?v=eZ-Vnj0sS2M

| •      | •   |                                                                |     |     |     |     |     |     |      |      |      |      |      |  |  |
|--------|-----|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|------|------|------|------|------|--|--|
|        |     | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |     |     |     |     |     |      |      |      |      |      |  |  |
| PO-PSO | PO1 | PO2                                                            | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |  |  |
| CO     | 101 | 102                                                            | 103 | 104 | 103 | 100 | 107 | 100 | 1301 | 1302 | 1303 | 1304 | 1505 |  |  |
| CO1    | 3   | 1                                                              | -   | -   | -   | 3   | 1   | 3   | 3    | 1    | 3    | 3    | 2    |  |  |
| CO2    | 3   | 1                                                              | -   | -   | -   | 3   | 3   | 3   | 3    | 3    | 3    | 3    | 3    |  |  |
| CO3    | 3   | 1                                                              | -   | -   | -   | 3   | 2   | 3   | 3    | 3    | 3    | 3    | 2    |  |  |
| CO4    | 3   | 1                                                              | -   | -   | -   | 3   | 2   | 3   | 3    | 3    | 3    | 3    | 2    |  |  |
| CO5    | 3   | 1                                                              | -   | -   | -   | 3   | 2   | 3   | 3    | 3    | 3    | 3    | 3    |  |  |

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation



| Effective from Session: 2019-2020 |                                               |                                                       |                                                                                                                                                                                                                                          |       |        |        |        |  |  |
|-----------------------------------|-----------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|--------|--------|--|--|
| Course Code                       | CH509                                         | H509 Title of the Course Green Chemistry L T P        |                                                                                                                                                                                                                                          |       |        |        |        |  |  |
| Year                              | Second                                        | Semester Fourth 3 1                                   |                                                                                                                                                                                                                                          |       |        |        |        |  |  |
| Pre-Requisite                     | BSc. with Chemistry                           | BSc. with Chemistry Co-requisite -                    |                                                                                                                                                                                                                                          |       |        |        |        |  |  |
| Course Objectives                 | instrumentation tech<br>(composition, structu | niques for the measure<br>are, etc.). After successfu | dents of chemistry and industrial chemistry as a broad base is<br>ement of different chemical and physical properties of co-<br>cully completion of course, the student will able understand the<br>chinques as well as their operation. | mpour | nds an | d mate | erials |  |  |

|     | Course Outcomes                                                                                                                                                                                               |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO1 | Students would able to create new routes for the synthesis of useful compounds without consuming harmful solvents.                                                                                            |
| CO2 | Students would be able to understand the principles of green chemistry                                                                                                                                        |
| CO3 | Students would able to apply the important tools for the synthesis of useful compounds without harming of environment.                                                                                        |
| CO4 | Students would restate difference between different modes of chromatographic separation; apply knowledge of qualitative and quantitative analysis in various fields of chemical, pharmaceutical industry etc. |
| CO5 | Students would able to illustrate the future of green chemistry                                                                                                                                               |

| Unit<br>No. | Title of the Unit                                                         | Content of Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Contact<br>Hrs. | Mapped<br>CO |
|-------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 1           | Introduction                                                              | Definition and concept of Green Chemistry, Need for Green Chemistry, Goals of Green Chemistry, Emergence of green Chemistry, Limitations/Obstacles in the pursuit of the goals of Green Chemistry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8               | 1            |
| 2           | Principles of Green<br>Chemistry and<br>Designing a<br>Chemical synthesis | Twelve principles of Green Chemistry with their explanations and examples; Designing a Green Synthesis using these principles; Prevention of Waste/byproducts; maximum incorporation of the materials used in the process into the final products (Atom Economy); prevention/minimization of hazardous/toxic products; designing safer chemicals different basic approaches to do so; selection of appropriate auxiliary substances (solvents, separation agents), green solvents, solventless processes, immobilized solvents and ionic liquids; energy requirements for reactions - use of microwaves, ultrasonic energy; selection of starting materials; avoidance of unnecessary derivatization careful use of blocking/protecting groups; use of catalytic reagents (wherever possible) in preference to stoichiometric reagents; designing of biodegradable products; prevention of chemical accidents; strengthening/development of analytical techniques to prevent and minimize the generation of hazardous substances in chemical processes | 8               | 2            |
| 3           | Green<br>Synthesis/Reactions<br>-I                                        | 1. Green Synthesis of the following compounds: adipic acid, catechol, BHT, methyl methacrylate, urethane, aromatic amines (4- aminodiphenylamine), benzyl bromide, acetaldehyde, disodium iminodiacetate (alternative to strecker synthesis), citral, ibuprofen, paracetamol, furfural.2. Microwave assisted reactions in water: Hofmann Elimination, Hydrolysis (of benzyl chloride, benzamide, n-phenyl benzamide, methylbenzoate to benzole acid), Oxidation (of toluene, alcohols). Microwave assisted reactions in organic solvents: Esterification, Fries rearrangement, Orthoester Claisen Rearrangement, Diels Alder Reaction, Decarboxylation. Microwave assisted solid state reactions: Deacetylation, Deprotection. Saponification of esters, Alkylation of reactive methylene compounds, reductions, synthesis of nitriles from aldehydes; anhydrides from dicarboxylic acid; pyrimidine and pyridine derivatives; 1,2-dihydrotriazine derivatives; benzimidazoles.                                                                        | 8               | 3            |
| 4           | Green<br>Synthesis/Reactions<br>-II                                       | 1. Ultrasound assisted reactions: Esterification, saponification, substitution reactions, Alkylations, oxidation, reduction, coupling reaction, Cannizaro reaction, Strecker synthesis, Reformatsky reaction.2. Selective methylation of active methylene group using dimethylcarbonate: Solid-state polymerization of amorphous polymers using diphenylcarbonate; Use of "Clayan", a nonmetallic oxidative reagent for various reactions; Free Radical Bromination; Role of Tellurium in Organic Syntheses; Biocatalysis in Organic Syntheses.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8               | 4            |
| 5           | Future Trends in<br>Green Chemistry                                       | Oxidation reagents and catalysts; Biomimetic, multifunctional reagents; Combinatorial green chemistry; Proliferation of solventless reactions; oncovalent derivatization; Green chemistry in sustainable development.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8               | 5            |

# Reference Books:

V.K. Ahluwalia & M.R. Kidwai: New Trends in Green Chemistry, Anamalaya Publishers (2005).

P.T. Anastes & J.K. Warmer: Oxford Green Chemistry- Theory and Practical, University Press (1998).

M.C. Cann & M.E. Connely: Real-World cases in Green Chemistry, American Chemical Society, Washington (2000).

M.A. Ryan & M. Tinnesand, Introduction to Green Chemistry, American Chemical Society, Washington (2002).

## e-Learning Source:

https://www.acs.org/content/acs/en/greenchemistry/principles/12-principles-of-green-chemistry.html

https://www.youtube.com/watch?v=SvRe\_wc0w3Q

https://extension.harvard.edu/blog/green-chemistry-and-the-future-of-sustainability/

|        |     | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |     |     |     |     |     |      |      |      |      |      |
|--------|-----|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| PO-PSO | PO1 | PO2                                                            | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| CO     | 101 | 102                                                            | 103 | 104 | 103 | 100 | 107 | 100 | 1501 | 1502 | 1503 | 1504 | 1503 |
| CO1    | 3   | 1                                                              | 2   | 3   | 1   | 2   | -   | -   | 3    | -    | 3    | 3    | 3    |
| CO2    | 3   | 1                                                              | 2   | 3   | 1   | 2   | -   | -   | 3    | -    | 3    | 3    | 3    |
| CO3    | 3   | 1                                                              | 2   | 3   | 1   | 2   | -   | -   | 3    | -    | 3    | 3    | 3    |
| CO4    | 3   | 1                                                              | 2   | 3   | 1   | 2   | -   | -   | 3    | -    | 3    | 3    | 3    |
| CO5    | 3   | 1                                                              | 2   | 3   | 1   | 2   | _   | _   | 3    | _    | 3    | 3    | 3    |

| Name & Sign of Program Coordinator      | Sign & Seal of HoD |
|-----------------------------------------|--------------------|
| - 1111111 11 11 11 11 11 11 11 11 11 11 | 2-8 0- 20          |



| Effective from Session: 2019-2020 |                                                                                                                               |                       |                                                    |   |   |   |   |  |  |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------|---|---|---|---|--|--|
| Course Code                       | CH519                                                                                                                         | Title of the Course   | e of the Course Computational Methods In Chemistry |   |   |   |   |  |  |
| Year                              | Second                                                                                                                        | Semester              | Fourth                                             | 3 | 1 | 0 | 4 |  |  |
| Pre-Requisite                     | BSc. with Chemistry                                                                                                           | nemistry Co-requisite |                                                    |   |   |   |   |  |  |
| Course Objectives                 | The objective of this course is to provide introduction to chemo-informatics. Molecular modeling for drug designing and other |                       |                                                    |   |   |   |   |  |  |

|     | Course Outcomes                                                                                                                               |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|
| CO1 | The student is expected to achieve a good grasp of the concepts and applications of chemoinformatics.                                         |
| CO2 | Explain the various stages of drug discovery. Explain various structure-based drug design methods, define molecular modeling. the student is  |
|     | expected to achieve a better understanding of in-silico drug designing, and the factors influencing drug discovery Explain various structure- |
|     | based drug design methods, bioinformatics in drug development.                                                                                |
| CO3 | Understand, algorithm for time dependence; leapfrog algorithm, Verlet algorithm, Boltzman velocity, duration of the MD run etc.               |
| CO4 | The student is expected to achieve a good grasp of the concepts and applications of chemoinformatics.                                         |
| CO5 | Explain the various stages of drug discovery. Explain various structure-based drug design methods, define molecular modeling. the student is  |
|     | expected to achieve a better understanding of in-silico drug designing, and the factors influencing drug discovery Explain various structure- |
|     | based drug design methods, bioinformatics in drug development.                                                                                |

| Unit<br>No. | Title of the Unit                             | Content of Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Contact<br>Hrs. | Mapped<br>CO |
|-------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 1           | Introduction to cheminformatics               | Evolution of cheminformatics, history of chemical information science, use of cheminformatics, prospectus of cheminformatics, and history of medicinal chemistry. Prodrugs and soft drugs, drug target, drug solubility, natural resources of lead compounds, pharmacokinetics and drug metabolism. Molecular modeling using computer                                                                                                                                                                     | 8               | 1            |
| 2           | Occupational<br>Safety; Molecular<br>modeling | Introduction, force field, quantum chemistry, Schrödinger equation, potential energy functions, energy minimization, local and global minima, saddle point, grid search. Semi-empirical methods (ZDO, MNDO, AM1, PM3). Molecular mechanics; Definition, balls and springs, force fields, bond-stretching, bond-bending, dihedral motions, out of plane angle potential, non-bonded interaction, coulomb interactions. Derivative methods; Steepest descent, conjugate gradient and Newton-Raphson method. | 8               | 2            |
| 3           | Drug design and discovery (DDD)               | Introduction drug design and discovery, principles of drug development. Bioinformatics in drug development, cheminformatics and pharmacoinformatics. Applications of drug discovery, in-silico drug designing, area influencing drug discovery. Introduction of two and three-dimensional quantitative structure—activity relationship (QSAR) and its role in DDD.                                                                                                                                        | 8               | 3            |
| 4           | Structure-based<br>drug designing<br>(SBDD)   | Introduction, target identification and validation, homology modeling, receptor mapping, active site analysis, pharmacophore mapping and grid maps. Ligand-based drug designing (LBDD); Introduction, lead designing, combinatorial chemistry, high throughput screening (HTS), database generation and chemical libraries, ADME property. Introduction to docking, methods of docking, docking with AutoDock, Vina, Dock etc.                                                                            | 8               | 4            |
| 5           | Molecular dynamics (MD)                       | Introduction, Newton's equation of motion, equilibrium point, radial distribution function, pair correlation functions, MD methodology, algorithm for time dependence; leapfrog algorithm, Verlet algorithm, Boltzman velocity, duration of the MD run. Starting structure, analysis of MD job, uses in drug designing, ligand protein interactions.                                                                                                                                                      | 8               | 5            |

#### **Reference Books:**

Chapman, Fortran 95/2003 for Scientists and Wngineers, McGraw-Hill International Edition, New York (2006).

V. Rajaraman, Computer Programming in Fortran 90 and 95, PHI Learning Pvt. Ltd, New Delhi (1997).

W. H. Press, S. A. Teukolsky, W. H. Vetterling, B. P. Flannery, Fortran Numerical Recipes Volume 2 (Fortran 90), Cambridge University Press (1996). R. L. Schwartz, T. Christiansen, L. Wall, Learning Perl Second Edition, O'Reilly Media (1997). 5. Foy, Mastering Perl First Edition, O'Reilly Media

(2007)
e-Learning Source:

 $https://www.youtube.com/watch?v=yX\_nPzmTpi8\\$ 

https://www.youtube.com/watch?v=Y3utQZIPJ-4

https://www.jubilantbiosys.com/integrated-drug-discovery-services

|                  |     | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |     |     |     |     |     |      |      |      |      |      |
|------------------|-----|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| PO-<br>PSO<br>CO | PO1 | PO2                                                            | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| CO1              | 3   |                                                                | 2   |     | 2   | 3   | 3   | 3   | 3    | 3    | 3    | 2    | 2    |
| CO2              | 3   |                                                                |     |     | 2   | 2   | 3   | 2   | 3    | 3    | 3    | 2    | 3    |
| CO3              | 3   |                                                                | 2   |     | 2   | 3   | 2   | 3   | 3    | 3    | 3    | 3    | 3    |
| CO4              | 3   | 2                                                              | 2   |     | 2   | 3   | 2   | 2   | 3    | 2    | 3    | 3    | 3    |
| CO5              | 3   | 2                                                              | 2   |     | 2   | 3   | 2   | 2   | 3    | 2    | 3    | 3    | 3    |

| Name & Sign of Program Coordinator | Sign & Seal of HoD |
|------------------------------------|--------------------|



| Effective from Session: 2019-2020 |                                                                                                               |                     |         |   |   |   |   |  |  |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------|---------|---|---|---|---|--|--|
| Course Code                       | CH520                                                                                                         | Title of the Course | Seminar | L | T | P | C |  |  |
| Year                              | Second                                                                                                        | Semester            | Fourth  | 0 | 0 | 4 | 2 |  |  |
| Pre-Requisite                     | BSc. with Chemistry Co-requisite                                                                              |                     |         |   |   |   |   |  |  |
|                                   | To develop students' communication and discussion skills                                                      |                     |         |   |   |   |   |  |  |
| Course Objectives                 | <ul> <li>Increase vocabulary knowledge, learn about communication style, develop learner autonomy.</li> </ul> |                     |         |   |   |   |   |  |  |
| Course Objectives                 | <ul> <li>To build confidence to use English for oral presentation.</li> </ul>                                 |                     |         |   |   |   |   |  |  |
|                                   | <ul> <li>To develop the ability to seek clarification and defend the ideas of others effectively.</li> </ul>  |                     |         |   |   |   |   |  |  |

|     | Course Outcomes                                                            |  |  |  |  |  |
|-----|----------------------------------------------------------------------------|--|--|--|--|--|
| CO1 | To develop and improve the communication skills                            |  |  |  |  |  |
| CO2 | To develop discussion and leadership abilities                             |  |  |  |  |  |
| CO3 | Skills for the development of demonstration abilities                      |  |  |  |  |  |
| CO4 | To develop skills for effective power point presentation                   |  |  |  |  |  |
| CO5 | To understand importance of gestures and body language during presentation |  |  |  |  |  |

|              | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |     |     |     |     |     |     |      |      |      |      |      |
|--------------|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| PO-PSO<br>CO | PO1                                                            | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| CO1          | 2                                                              | 3   | 1   | -   | 2   | -   | -   | 3   | -    | 3    | 2    | 2    | 3    |
| CO2          | 3                                                              | 3   | 2   | -   | 2   | 2   | -   | 3   | 1    | 2    | 2    | 1    | 3    |
| CO3          | 3                                                              | 3   | 1   | -   | 1   | 2   | -   | 3   | 2    | 2    | 2    | 1    | 3    |
| CO4          | 3                                                              | 3   | 1   | -   | 1   | 2   | -   | 3   | 2    | 2    | 2    | 2    | 3    |
| CO5          | 3                                                              | 3   | 1   | -   | 1   | 1   | -   | 3   | -    | 2    | 1    | -    | 3    |

| Name & Sign of Program Coordinator | Sign & Seal of HoD |
|------------------------------------|--------------------|



| Effective from Session: 2019-2020 |                                                                                          |                     |                                 |   |   |   |    |  |  |
|-----------------------------------|------------------------------------------------------------------------------------------|---------------------|---------------------------------|---|---|---|----|--|--|
| Course Code                       | CH521                                                                                    | Title of the Course | Project Training and Evaluation | L | T | P | C  |  |  |
| Year                              | Second                                                                                   | Semester            | Fourth                          | 0 | 0 | 0 | 10 |  |  |
| Pre-Requisite                     | Pre-Requisite BSc. with Chemistry Co-requisite                                           |                     |                                 |   |   |   |    |  |  |
| <b>Course Objectives</b>          | e Objectives To provide the industrial exposure and enhance technical skills of students |                     |                                 |   |   |   |    |  |  |

|     | Course Outcomes                                                    |  |  |  |  |  |  |
|-----|--------------------------------------------------------------------|--|--|--|--|--|--|
| CO1 | Hands on training                                                  |  |  |  |  |  |  |
| CO2 | Integrate class room theory with laboratory practice.              |  |  |  |  |  |  |
| CO3 | Understanding professional ethics of industry and code of conduct. |  |  |  |  |  |  |
| CO4 | Essential training in laboratory safety procedures                 |  |  |  |  |  |  |
| CO5 | Compilation of data and report writing                             |  |  |  |  |  |  |

|              | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |     |     |     |     |     |     |      |      |      |      |      |
|--------------|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| PO-PSO<br>CO | PO1                                                            | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| CO1          | 3                                                              | 1   | 1   | -   | -   | 3   | 2   | 3   | 3    | 3    | 3    | 3    | 3    |
| CO2          | 3                                                              | -   | 1   | -   | -   | 3   | 1   | 3   | 3    | 2    | 2    | 3    | 3    |
| CO3          | 3                                                              | 2   | 1   | -   | 3   | 2   | -   | 3   | 3    | 3    | 1    | 2    | 3    |
| CO4          | 3                                                              | 1   | 1   | -   | 2   | 3   | 2   | 3   | 3    | 2    | 3    | 3    | 3    |
| CO5          | 3                                                              | 3   | 1   | -   | 2   | 3   | -   | 3   | 3    | 3    | 3    | 3    | 3    |

| Name & Sign of Program Coordinator | Sign & Seal of HoD |
|------------------------------------|--------------------|